Parasites and Vectors

Expression of active trypsin-like serine peptidases in the midgut of sugar-feeding female Anopheles aquasalis

Background: Anopheles aquasalis is a dipteran of the family Culicidae that is widely distributed in the coastal regions of South and Central America. This species acts as a vector of Plasmodium vivax, an important etiological agent of malaria, which represents a serious public health problem. In mosquitoes, trypsin-like serine proteases are important in blood meal digestion, immune responses and reproductive functions. The study of peptidases expressed in the mosquito midgut is essential to understanding the mechanisms of parasite-host interaction and the physiological process of nutrient digestion. Methods: Our study aimed to identify and characterize the proteolytic activities in the midgut of sugar-fed An. aquasalis females using zymographic analyses (substrate-SDS-PAGE), in-solution assays and mass spectrometry. Results: Here, we used a zymographic analysis to further biochemically characterize the proteolytic profile of the midgut of sugar-feeding An. aquasalis females. The trypsin peptidases migrated between ~17 and ~76 kDa and displayed higher proteolytic activities between pH 7.5 and 10 and at temperatures between 37 °C and 50 °C. Four putative trypsin-like serine peptidases were identified using mass spectrometry and data mining. The molecular masses of these peptidases were similar to those observed using zymography, which suggested that these peptidases could be responsible for some of the observed proteolytic bands. Conclusions: Taken together, our results contribute to the gene annotation of the unknown genome of this species, to the tissue location of these peptidases, and to the functional prediction of these crucial enzymes, which all impact further studies of this species.

Palp ratio as a field identification tool for two members of the Anopheles gambiae complex in Ghana ( A. melas and A. gambiae )

Background: The Anopheles gambiae Giles complex is the most widely studied and the most important insect vector group. We explored the use of the palp ratio method as a field tool to identify A. melas and A. gambiae in Ghana. Methods: Human landing catches were conducted to collect mosquitoes in the coastal area of Western Region of Ghana. Palps were removed and segments 3 and 4 + 5 measured using a compound microscope. DNA extraction and downstream PCR for species identification was carried out using the legs and wings. Known A. gambiae collected from the Ashanti Region of Ghana were used for comparison. Results: A total of 2120 A. gambiae were collected. Lengths of segments 3 and 4 + 5 were significantly correlated in samples from both regions. Using a palp ratio of 0.81 as the cut-off value, 14.9 % outliers (≥0.81) from our study area were confirmed by PCR as A. melas. PCR also confirmed outliers from the Ashanti Region with palp ratio < 0.81 (10.2 %) as A. gambiae. Conclusion: The palp ratio method proved to be a useful tool to identify populations of salt and freshwater A. melas and A. gambiae.

Impact of vegetable crop agriculture on anopheline agressivity and malaria transmission in urban and less urbanized settings of the South region of Cameroon

Background: The use of inland valley swamps for vegetable crop agriculture contributes to food security in urban and less urbanized settings in Africa. The impact of this agriculture on aggressive mosquitoes’ diversity and malaria transmission in central Africa is poorly documented. This study is aimed at assessing the impact of vegetable crop agriculture on these entomological parameters in urban and less urbanized settings of the forest area, south of Cameroon. Methods: The human bait technique was used for the capture of aggressive mosquitoes from January to December 2012. For three consecutive days each month, captures were performed on volunteers in hydro-agricultural and river bank sites of Akonolinga and Yaoundé. Physico-chemical characteristics of mosquito breeding sites were recorded. Molecular alongside morpho-taxonomic techniques were used for the identification of mosquito species; ELISA test was used to reveal Plasmodium falciparum infected mosquitoes through the detection of CSP. Mosquito diversity, aggressivity and malaria transmission in sites and settings were determined and compared. Results: Biting rates were higher in hydro-agricultural sites of less urbanized and urban settings (31.8 b/p/n and 28.6 b/p/n respectively) than in river banks sites (6.83 b/p/n and 3.64 b/p/n respectively; p < 0.0001). Physico-chemical parameters of breeding sites were not fundamentally different. Five anopheline species were identified; An. gambiae, An. funestus s.s., An. moucheti s.s., An. hancocki and An. nili s.s. In hydro-agricultural sites 2 species were captured in the urban setting versus 4 in the less urbanized setting, meanwhile in river bank sites, 3 species were captured in the urban setting versus 4 species in the less urbanized setting. An. nili s.s. was found in river banks only. An. hancocki was not found to insure Plasmodium falciparum Welch transmission. EIR in hydro-agricultural sites varied from 1.86 ib/p/n (urban area) to 2.13 ib/p/n (less urbanized area) with higher rates in April/May and August. Overall, EIR was higher in less urbanized areas (p < 0.0001) but the difference was nullified with the practice of vegetable crop agriculture (p = 0.2). Conclusion: These results highlight the need for specific preventive measures that take into account the ecological peculiarities related to vegetable crop agriculture on hydro-agricultural lands, in order to protect inhabitants from malaria.

Diagnosis of toxoplasmosis and typing of Toxoplasma gondii

Toxoplasmosis, caused by the obligate intracellular protozoan Toxoplasma gondii, is an important zoonosis with medical and veterinary importance worldwide. The disease is mainly contracted by ingesting undercooked or raw meat containing viable tissue cysts, or by ingesting food or water contaminated with oocysts. The diagnosis and genetic characterization of T. gondii infection is crucial for the surveillance, prevention and control of toxoplasmosis. Traditional approaches for the diagnosis of toxoplasmosis include etiological, immunological and imaging techniques. Diagnosis of toxoplasmosis has been improved by the emergence of molecular technologies to amplify parasite nucleic acids. Among these, polymerase chain reaction (PCR)-based molecular techniques have been useful for the genetic characterization of T. gondii. Serotyping methods based on polymorphic polypeptides have the potential to become the choice for typing T. gondii in humans and animals. In this review, we summarize conventional non-DNA-based diagnostic methods, and the DNA-based molecular techniques for the diagnosis and genetic characterization of T. gondii. These techniques have provided foundations for further development of more effective and accurate detection of T. gondii infection. These advances will contribute to an improved understanding of the epidemiology, prevention and control of toxoplasmosis.

A meta-analysis of the prevalence of Toxoplasma gondii in animals and humans in Ethiopia

Background: Toxoplasmosis is a worldwide zoonosis. The objectives of this study were to estimate the prevalence and assess the potential risk factors of Toxoplasma gondii infections in animals and humans in Ethiopia by using meta-analytical methods. Methods: Published studies on T. gondii in animals and humans in Ethiopia were searched in Medline, Google scholar and the lists of references of articles. Eligible studies were selected by using inclusion and exclusion criteria. The risks of within and across study biases, and the variations in prevalence estimates attributable to heterogeneities were assessed. Pooled prevalence was estimated by the DerSimonian and Laird random effects model. Results: Thirty two studies were eligible and data from 5689 animals and 5718 humans were used for quantitative syntheses. The pooled IgG seroprevalence in cats, small ruminants and humans were estimated at 87.72 % (95 % CI = 78.63, 93.28), 34.59 % (95 % CI = 21.08, 51.12) and 74.73 % (95 % CI = 61.85, 84.36), respectively. The odds of infections were higher in pregnant than in non pregnant women (OR = 3.96), in individuals that had contact with cats than those with no contact (OR = 2.53), and in urban than in rural inhabitants (OR = 2.06). Conclusions: Toxoplasmosis is highly prevalent and could be a cause of considerable reproductive wastage in small ruminants and multiple diseases in humans in Ethiopia. Public education on preventive measures could help reduce the transmission of the parasite to humans.

Phenotypic differentiation in love song traits among sibling species of the Lutzomyia longipalpis complex in Brazil

Background: Brazilian populations of Lutzomyia longipalpis may constitute a complex of cryptic species, and this report investigates the distribution and number of potential sibling species. One of the main differences observed among Brazilian populations is the type of acoustic signal produced by males during copulation. These copulation song differences seem to be evolving faster than neutral molecular markers and have been suggested to contribute to insemination failure observed in crosses between these sibling species. In previous studies, two main types of copulation songs were found, burst-type and pulse-type. The latter type can, in turn, be further subdivided into five different patterns. Methods: We recorded male song from 13 new populations of the L. longipalpis complex from Brazil and compared the songs with 12 already available. Results: Out of these 25 populations, 16 produce burst-type and 9 produce pulse-type songs. We performed a principal component analysis in these two main groups separately and an additional discriminant analysis in the pulse-type group. The pulse-type populations showed a clear separation between the five known patterns with a high correspondence of individuals to their correct group, confirming the differentiation between them. The distinctiveness of the burst-type subgroups was much lower than that observed among the pulse-type groups and no clear population structure was observed. This suggests that the burst-type populations represent a single species. Conclusion: Overall, our results are consistent with the existence in Brazil of at least six species of the L. longipalpis complex, one with a wide distribution comprising all the populations with burst-type songs, and five more closely related allopatric siblings with different pulse-type song patterns and more restricted distribution ranges.

Long-term follow-up of dogs with leishmaniosis treated with meglumine antimoniate plus allopurinol versus miltefosine plus allopurinol

Background: Visceral leishmaniosis is a potentially life-threatening illness caused by a protozoan parasite of the genus Leishmania. It is found mainly in areas where both the parasite and its vector are endemic and is one of the most challenging infectious diseases in the world to control. HIV infected patients are vulnerable to Leishmania infections, and the main reservoir hosts of Leishmania infantum parasites are domestic dogs. Here, we evaluated the long-term efficacy of treatment with meglumine antimoniate plus allopurinol (G1) compared to miltefosine plus allopurinol (G2) in dogs naturally infected L. infantum. Methods: Eighteen dogs with leishmaniosis were divided into the following two groups: G1 (n = 9) was treated subcutaneously with meglumine antimoniate (100 mg/kg/day/30 days) plus allopurinol (10 mg/kg/per day/30 days), while G2 (n = 9) was treated orally with miltefosine (2 mg/Kg/day/30 days) plus allopurinol (10 mg/kg/day/30 days). Thereafter, the same dose of allopurinol was administered to both groups for 6 years. Leishmania DNA in lymph node aspirates from the G1 and G2 dogs was quantified by real-time quantitative PCR at baseline and every 3 months for 24 months, and then at 28, 36, 48, 60 and 72 months. At each assessment, the dogs were examined for signs of disease, and their clinical scores were recorded. Results: Both combination therapies produced significant clinical improvements in the dogs, with a significant reduction in the parasitic load in the lymph nodes of the dogs from both groups after 3 months of treatment. Clinical relapses were observed in four dogs from G2 (miltefosine/allopurinol), and just one dog from G1 (meglumine antimoniate/allopurinol). All dogs that relapsed had increased clinical scores, and increased anti-Leishmania antibody titers and parasitic loads in their lymph nodes. Conclusions: Long-term, the clinical and laboratory findings of the G1 dogs were more stable than those of the G2 dogs, thus indicating that meglumine antimoniate had better clinical efficacy than miltefosine. The results suggest that treatment with allopurinol as a maintenance therapy is crucial for stabilizing the care of canine leishmaniosis.

Genetic interrelationships of North American populations of giant liver fluke Fascioloides magna

Background: Population structure and genetic interrelationships of giant liver fluke Fascioloides magna from all enzootic North American regions were revealed in close relation with geographical distribution of its obligate definitive cervid hosts for the first time. Methods: Variable fragments of the mitochondrial cytochrome c oxidase subunit I (cox1; 384 bp) and nicotinamide dehydrogenase subunit I (nad1; 405 bp) were applied as a tool. The concatenated data set of both cox1 and nad1 sequences (789 bp) contained 222 sequences that resulted in 50 haplotypes. Genetic data were analysed using Bayesian Inference (BI), Maximum Likelihood (ML) and Analysis of Molecular Variance (AMOVA). Results: Phylogenetic analysis revealed two major clades of F. magna, which separated the parasite into western and eastern populations. Western populations included samples from Rocky Mountain trench (Alberta) and northern Pacific coast (British Columbia and Oregon), whereas, the eastern populations were represented by individuals from the Great Lakes region (Minnesota), Gulf coast, lower Mississippi, and southern Atlantic seaboard region (Mississippi, Louisiana, South Carolina, Georgia, Florida) and northern Quebec and Labrador. Haplotype network and results of AMOVA analysis confirmed explicit genetic separation of western and eastern populations of the parasite that suggests long term historical isolation of F. magna populations. Conclusion: The genetic makeup of the parasite’s populations correlates with data on historical distribution of its hosts. Based on the mitochondrial data there are no signs of host specificity of F. magna adults towards any definitive host species; the detected haplotypes of giant liver fluke are shared amongst several host species in adjacent populations.

Evaluation of traps and lures for mosquito vectors and xenomonitoring of Wuchereria bancrofti infection in a high prevalence Samoan Village

Background: Elimination of lymphatic filariasis (LF) in Samoa continues to be challenging despite multiple annual mass drug campaigns aimed at stopping transmission by reducing the prevalence and density of microfilaraemia. The persistence of transmission may be partly related to the highly efficient Aedes vectors. The assessment of pathogen transmission by mosquito vectors and of vector control relies on the ability to capture mosquitoes efficiently. The aims of this study are to compare trapping methods to capture LF-infected mosquitoes and determine the role in transmission of the species of Aedes mosquitoes in the area. Methods: Fasitoo-Tai village was the chosen site because of persistent transmission despite annual mass drug administration. Sampling methods included BioGents Sentinel (BGS) trap, human-baited collections (HBC) and the Centers for Disease Control (CDC) trap. BGS and CDC traps were baited with BG-lure, CO2, and/or octenol. Individual trap locations were geo-located and efficiency of sampling methods was evaluated using a randomized Latin-square design in two locations. Number of mosquitoes collected (male and female), as well as species for each trapping method were determined. Additionally, Ae. polynesiensis and Ae. (Finlaya) spp. females were pooled by trap method and analysed for filarial DNA. Infection prevalence was estimated using the PoolScreen software. Results: The BGS trap with any type of bait collected more mosquitoes compared to both the CDC trap and the HBC. The BGS trap baited with BG-lure collected more mosquitoes than with CO2 and octenol. There were no significant differences between trapping methods in terms of proportions of infected females collected. The prevalence of filarial infection in Ae. polynesiensis and Ae. (Finlaya) spp. was estimated at 4.7 % and 0.67 % respectively. Conclusions: This study supports the use of the BGS trap for research on and surveillance of the mosquito vectors of LF in Samoa. The BGS trap is a suitable and safer alternative to HBC for sampling Ae. polynesiensis and Ae. (Finlaya) spp., which continue to be the predominant vectors of LF. Of concern was the high prevalence of LF in mosquitoes despite a recent mass drug administration programme. This highlights the urgency for updated policies concerning filariasis elimination in Samoa.

Evaluation of afoxolaner chewables to control flea populations in naturally infested dogs in private residences in Tampa FL, USA

Background: A study was conducted to evaluate the effectiveness of afoxolaner chewables to control flea populations in naturally infested dogs in private residences in Tampa FL, USA. Evaluations of on-animal and premises flea burdens, flea sex structure and fed-unfed premises flea populations were conducted to more accurately assess flea population dynamics in households. Methods: Thirty seven naturally flea infested dogs in 23 homes in Tampa, FL were enrolled in the study and treated with afoxolaner chewables. Chewables (NexGard® Chewables; Merial) were administered according to label directions by study investigators on study day 0 and once again between study days 28 and 30. Flea infestations on pets were assessed using visual area thumb counts and premises flea infestations were assessed using intermittent-light flea traps on days 0, 7, 14, 21, and once between study days 28–30, 40–45, and 54–60. Results: Within 7 days of administration of afoxolaner chewable tablets, flea counts on dogs were reduced by 99.3 %. By one month post-treatment, total flea counts on dogs were reduced by 99.9 %, with 97.3 % (36/37) of the dogs being flea free. Following the second dosing on study day 28–30, total on-dog flea burden was reduced by 100 % on days 40–45 and 54–60. On day 0, the traps collected a geometric mean of 18.2 fleas. Subsequent reductions in emerging flea populations were 97.7 and 100 % by days 28–30 and 54–60, respectively. There were 515 total fleas (Ctenocephalides felis felis) collected in the intermittent light flea traps on day 0, and 40.4 % of those fleas displayed visual evidence of having fed. Seven days after initial treatment, only 13.1 % of the fleas contained blood and by day 14 only 4.9 % of the fleas collected in traps displayed evidence of having fed. On day 0, prior to treatment, 60 % of the unfed fleas collected in intermittent-light flea traps were females, but by days 28–30, unfed males accounted for 78 % of the population. Conclusions: This in-home investigation conducted during the summer of 2014 in subtropical Tampa, FL demonstrated that afoxolaner chewables rapidly and effectively eliminated flea populations in infested dogs and homes.

Acaricidal effect and histological damage induced by Bacillus thuringiensis protein extracts on the mite Psoroptes cuniculi

Background: The mite Psoroptes cuniculi is a common worldwide ectoparasite and the most frequently found in rabbit farms. It causes significant economic losses on commercial rabbit breeding associated with poor leather quality, reduced conception rates, weight loss, poor growth and death. Several strategies have been proposed for the treatment of mange caused by this mite, ranging from the use of acaricides, entomopathogenic fungi, essential oils and vaccines. However, therapy and control of both human scabies and animal mange are still based mainly on the use of drugs and chemicals such as ivermectin, which involves disadvantages including genotoxic and cytotoxic effects, resistance and environmental damage. Bacillus thuringiensis is a bacterium, innocuous for human being, domestic animals and plants that produces highly biodegradable proteins, and has been used worldwide for biological control. The aim of this work was to find an alternative treatment based on biological control for scabies caused by Psoroptes cuniculi, using protein extracts from strains of Bacillus thuringiensis. Methods: P. cuniculi mites were obtained from naturally infected New Zealand rabbits, and different doses of protein from B. thuringiensis were added to the mites. We measured mortality and obtained the median lethal concentration and median lethal times. For histological analysis, the mites were fixed in 10 % formalin, processed according to the paraffin embedded tissue technique. Sections were stained with hematoxylin-eosin to observe the general histological structure. Results: We report here for the first time evidence about the in vitro acaricidal effect caused by the strain GP532 of B. thuringiensis on the mite Psoroptes cuniculi, with an LC50 of 1.3 mg/ml and a LT50 of 68 h. Histological alterations caused by B. thuringiensis on this mite, included the presence of dilated intercellular spaces in the basal membrane, membrane detachment of the peritrophic matrix and morphological alterations in columnar cells of the intestine. Conclusions: Since this mite is an obligate ectoparasite that affects rabbits, goats, horses, cows and sheep, B. thuringiensis protein extracts are proposed as a potential treatment for biological control of mange in farm animals.

Developing a continental atlas of the distribution and trypanosomal infection of tsetse flies ( Glossina species)

Background: Tsetse flies (Genus: Glossina) are the sole cyclical vectors of African trypanosomoses. Despite their economic and public health impacts in sub-Saharan Africa, it has been decades since the latest distribution maps at the continental level were produced. The Food and Agriculture Organization of the United Nations is trying to address this shortcoming through the Atlas of tsetse and African animal trypanosomosis. Methods: For the tsetse component of the Atlas, a geospatial database is being assembled which comprises information on the distribution and trypanosomal infection of Glossina species. Data are identified through a systematic literature review. Field data collected since January 1990 are included, with a focus on occurrence, apparent density and infection rates of tsetse flies. Mapping is carried out at the level of site/location. For tsetse distribution, the database includes such ancillary information items as survey period, trap type, attractant (if any), number of traps deployed in the site and the duration of trapping (in days). For tsetse infection, the sampling and diagnostic methods are also recorded. Results: As a proof of concept, tsetse distribution data for three pilot countries (Ethiopia, Kenya and Uganda) were compiled from 130 peer-reviewed publications, which enabled tsetse occurrence to be mapped in 1266 geographic locations. Maps were generated for eight tsetse species (i.e. G. brevipalpis, G. longipennis, G. fuscipes fuscipes, G. tachinoides, G. pallidipes, G. morsitans submorsitans, G. austeni and G. swynnertoni). For tsetse infection rates, data were identified in 25 papers, corresponding to 91 sites. Conclusions: A methodology was developed to assemble a geo-spatial database on the occurrence, apparent density and trypanosomal infection of Glossina species, which will enable continental maps to be generated. The methodology is suitable for broad brush mapping of all tsetse species of medical and veterinary public health importance. For a few tsetse species, especially those having limited economic importance and circumscribed geographic distribution (e.g. fusca group), recently published information is scanty or non-existent. Tsetse-infested countries can adopt and adapt this approach to compile national Atlases, which ought to draw also on the vast amount of unpublished information.

Patterns of genetic variation and life history traits of Zeuxapta seriolae infesting Seriola lalandi across the coastal and oceanic areas in the southeastern Pacific Ocean: potential implications for aquaculture

Background: The monogenean, Zeuxapta seriolae, is a host-specific parasite that has an extensive geographical distribution on its host, Seriola lalandi, and is considered highly pathogenic in farmed fish. In recent years, developing cultures of S. lalandi in different coastal localities in Southeastern Pacific Ocean (SEP) have been affected by moderate and heavy infections of this parasite, attributed to contagion from wild to farmed fish. Here, we evaluated the pattern of genetic variations and biological traits of Z. seriolae in a spatial and temporal scale across its geographical distribution in SEP to determine its genetic status and biological traits, which could affect its transmission dynamics from wild to farmed fish. Methods: Wild fish and their parasites were sampled from fisheries in the northern Chilean coast (NCC: 24°S-30°S) and Eastern islands (JFA: ca 33°S; 80°W) between 2012 and 2014. Fragments of 816 bp of the cytochrome c oxidase subunit I (COI) gene was sequenced for 112 individuals from NCC and 63 from JFA and compared using AMOVA. Prevalence and intensity of Z. seriolae were calculated for each area. The parasite body size, fecundity and size at sexual maturity were estimated for 177 parasites from NCC and 128 from JFA, and significant differences were evaluated using GLM. Results: Geographical genetic structuring was detected for Z. seriolae across SEP, with a population in NCC and the other in JFA, both with the same high haplotype diversity. Neutrality tests and mismatch analyses indicated that both Z. seriolae populations are stable. Parasite biological traits such as fecundity, body size, and size at sexual maturity, and population parameters varied significantly between geographical areas. Conclusion: Two genetic groups of Z. seriolae were detected in wild fish across SEP. Because of the seasonal migration of wild host and temporal contact with farming, quantifying the genetic diversity and level of gene flow or isolation between parasite populations is useful for fish health management in farming. The smallest size of sexual maturity in parasites from NCC is predictive of shorter life cycles, and their high genetic diversity suggests high evolutionary potential and high transmission of this parasite to farmed hosts.

Tick-borne diseases of bovines in Pakistan: major scope for future research and improved control

Ticks and tick-borne diseases (TBDs) affect the productivity of bovines in tropical and subtropical regions of the world, leading to a significant adverse impact on the livelihoods of resource-poor farming communities. Globally, four main TBDs, namely anaplasmosis, babesiosis, theileriosis, and cowdriosis (heartwater) affect bovines, and the former three are of major economic importance in bovines in Pakistan. Given that the livestock sector has become an integral part of Pakistan’s economy and a large number of dairy cattle are being imported into the country, in order to meet an increasing demand of milk and milk products, it is timely to review current status of bovine TBDs in Pakistan and to identify gaps in the knowledge of TBDs and their control. Although there has been a recent increase in the number of studies of TBDs in this country, information on their prevalence, distribution, tick vectors, and control is limited. This article provides a brief background on key bovine TBDs and ticks and reviews the current status of bovine TBDs in Pakistan to identify gaps in knowledge and understanding of these diseases, propose areas for future research and draw attention to the need for improved tools for the diagnosis and control of TBDs in this country.

Parasite prevalence in fecal samples from shelter dogs and cats across the Canadian provinces

Background: In Canada, surveys of enteric parasites in dogs and cats have been reported sporadically over the past 40 years, mostly focusing on a specific region. The present work was performed to determine the current prevalence of various parasites in faecal samples from shelter dogs and cats across the Canadian provinces. Methods: A total of 1086 dog and 636 cat fecal samples from 26 shelters were analysed using a sugar solution double centrifugal flotation technique. Prevalences (national, regional, provincial, age and parasite-specific), were calculated and compared using the Fisher-Exact test. A multiplex PCR was performed to distinguish Taenia spp, Echinococcus granulosus and E. multilocularis on samples positive for taeniid eggs. Results: Overall, 33.9% of dogs and 31.8% of cats were positive for at least one parasite. Toxocara canis and T. cati were the most prevalent parasite present in fecal samples followed by Cystoisospora spp. Prevalence in dogs was similar across the Atlantic, East, West and Pacific regions, while prevalence in cats varied regionally. Eggs of E. granulosus/E. canadensis were detected in samples from dogs from BC, AB, and ON. Conclusions: Data from this study will help in the development of strategies, based on the level of risk per geographic location for the prevention and response to these parasites in pets and free-roaming and shelter animals in Canada.

A field trial of a PCR-based Mansonella ozzardi diagnosis assay detects high-levels of submicroscopic M. ozzardi infections in both venous blood samples and FTA&#174; card dried blood spots

Background: Mansonella ozzardi is a poorly understood human filarial parasite with a broad distribution throughout Latin America. Most of what is known about its parasitism has come from epidemiological studies that have estimated parasite incidence using light microscopy. Light microscopy can, however, miss lighter, submicroscopic, infections. In this study we have compared M. ozzardi incidence estimates made using light microscopy, with estimates made using PCR. Methods: 214 DNA extracts made from Large Volume Venous Blood Samples (LVVBS) were taken from volunteers from two study sites in the Rio Solimões region: Codajás [n = 109] and Tefé [n = 105] and were subsequently assayed for M. ozzardi parasitism using a diagnostic PCR (Mo-dPCR). Peripheral finger-prick blood samples were taken from the same individuals and used for microscopic examination. Finger-prick blood, taken from individuals from Tefé, was also used for the creation of FTA®card dried blood spots (DBS) that were subsequently subjected to Mo-dPCR. Results: Overall M. ozzardi incidence estimates made with LVVBS PCRs were 1.8 times higher than those made using microscopy (44.9 % [96/214] compared with 24.3 % [52/214]) and 1.5 times higher than the PCR estimates made from FTA®card DBS (48/105 versus 31/105). PCR-based detection of FTA®card DBS proved 1.3 times more sensitive at diagnosing infections from peripheral blood samples than light microscopy did: detecting 24/105 compared with 31/105. PCR of LVVBS reported the fewest number of false negatives, detecting: 44 of 52 (84.6 %) individuals diagnosed by microscopy; 27 of 31 (87.1 %) of those diagnosed positive from DBSs and 17 out of 18 (94.4 %) of those diagnosed as positive by both alternative methodologies. Conclusions: In this study, Mo-dPCR of LVVBS was by far the most sensitive method of detecting M. ozzardi infections and detected submicroscopic infections. Mo-dPCR FTA®card DBS also provided a more sensitive test for M. ozzardi diagnosis than light microscopy based diagnosis did and thus in settings where only finger-prick assays can be carried-out, it may be a more reliable method of detection. Most existing M. ozzardi incidence estimates, which are often based on light microscope diagnosis, are likely to dramatically underestimate true M. ozzardi parasitism incidence levels.

Analysis of the complete Fischoederius elongatus (Paramphistomidae, Trematoda) mitochondrial genome

Background: Fischoederius elongates is an important trematode of Paramphistomes in ruminants. Animals infected with F. elongates often don’t show obvious symptoms, so it is easy to be ignored. However it can cause severe economic losses to the breeding industry. Knowledge of the mitochondrial genome of F. elongates can be used for phylogenetic and epidemiological studies.FindingsThe complete mt genome sequence of F. elongates is 14,120 bp in length and contains 12 protein-coding genes, 22 tRNA genes, two rRNA genes and two non-coding regions (LNR and SNR). The gene arrangement of F. elongates is the same as other trematodes, such as Fasciola hepatica and Paramphistomum cervi. Phylogenetic analyses using concatenated amino acid sequences of the 12 protein-coding genes by Maximum-likelihood and Neighbor-joining analysis method showed that F. elongates was closely related to P. cervi. Conclusion: The complete mt genome sequence of F. elongates should provide information for phylogenetic and epidemiological studies for F. elongates and the family Paramphistomidae.

Mutual exclusion of Asaia and Wolbachia in the reproductive organs of mosquito vectors

Background: Wolbachia is a group of intracellular maternally inherited bacteria infecting a high number of arthropod species. Their presence in different mosquito species has been largely described, but Aedes aegypti, the main vector of Dengue virus, has never been found naturally infected by Wolbachia. Similarly, malaria vectors and other anophelines are normally negative to Wolbachia, with the exception of an African population where these bacteria have recently been detected. Asaia is an acetic acid bacterium stably associated with several mosquito species, found as a dominant microorganism of the mosquito microbiota. Asaia has been described in gut, salivary glands and in reproductive organs of adult mosquitoes in Ae. aegypti and in anophelines. It has recently been shown that Asaia may impede vertical transmission of Wolbachia in Anopheles mosquitoes. Here we present an experimental study, aimed at determining whether there is a negative interference between Asaia and Wolbachia, for the gonad niche in mosquitoes. Methods: Different methods (PCR and qPCR, monoclonal antibody staining and FISH) have been used to address the question of the co-localization and the relative presence/abundance of the two symbionts. PCR and qPCR were performed to qualitatively and quantitatively verify the distribution of Asaia and Wolbachia in different mosquito species/organs. Monoclonal antibody staining and FISH were performed to localize the symbionts in different mosquito species. Results: Here we provide evidence that, in Anopheles and in other mosquitoes, there is a reciprocal negative interference between Asaia and Wolbachia symbionts, in terms of the colonization of the gonads. In particular, we have shown that in some mosquito species the presence of one of the symbionts prevented the establishment of the second, while in other systems the symbionts were co-localized, although at reduced densities. Conclusions: A mutual exclusion or a competition between Asaia and Wolbachia may contribute to explain the inability of Wolbachia to colonize the female reproductive organs of anophelines, inhibiting its vertical transmission and explaining the absence of Wolbachia infection in Ae. aegypti and in the majority of natural populations of Anopheles mosquitoes.

Anaplasma phagocytophilum prevalence in ticks and rodents in an urban and natural habitat in South-Western Slovakia

Background: Ixodes ricinus is the principal vector of Anaplasma phagocytophilum, the ethiological agent of granulocytic anaplasmosis in Europe. Anaplasmosis is an emerging zoonotic disease with a natural enzootic cycle. The reservoir competence of rodents is unclear. Monitoring of A. phagocytophilum prevalence in I. ricinus and rodents in various habitat types of Slovakia may contribute to the knowledge about the epidemiology of anaplasmosis in Central Europe. Methods: Over 4400 questing ixodid ticks, 1000 rodent-attached ticks and tissue samples of 606 rodents were screened for A. phagocytophilum DNA by real-time PCR targeting the msp2 gene. Ticks and rodents were captured along six transects in an urban/suburban and natural habitat in south-western Slovakia during 2011–2014. Estimates of wildlife (roe deer, red deer, fallow deer, mouflon, wild boar) densities in the study area were taken from hunter’s yearly reports. Spatial and temporal differences in A. phagocytophilum prevalence in questing I. ricinus and relationships with relative abundance of ticks and wildlife were analysed. Results: Overall prevalence of A. phagocytophilum in questing I. ricinus was significantly higher in the urban/suburban habitat (7.2 %; 95 % CI: 6.1–8.3 %) compared to the natural habitat (3.1 %; 95 % CI: 2.5–3.9 %) (χ 2 = 37.451; P < 0.001). Significant local differences in prevalence of infected questing ticks were found among transects within each habitat as well as among years and between seasons. The trapped rodents belonged to six species. Apodemus flavicollis and Myodes glareolus prevailed in both habitats, Microtus arvalis was present only in the natural habitat. I. ricinus comprised 96.3 % of the rodent-attached ticks, the rest were Haemaphysalis concinna, Ixodes trianguliceps and Dermacentor reticulatus. Only 0.5 % of rodent skin and 0.6 % of rodent-attached ticks (only I. ricinus) were infected with A. phagocytophilum. Prevalence of A. phagocytophilum in questing I. ricinus did not correlate significantly with relative abundance of ticks or with abundance of wildlife in the area. Conclusion: The study confirms that urban I. ricinus populations are infected with A. phagocytophilum at a higher rate than in a natural habitat of south-western Slovakia and suggests that rodents are not the main reservoirs of the bacterium in the investigated area.

Identification and genetic characterization of Toxoplasma gondii in free-ranging bristle-spined porcupine ( Chaetomys subspinosus ), a threatened arboreal mammal from the Brazilian Atlantic Forest

Background: Strains of Toxoplasma gondii in Brazil have high genetic diversity compared to North America and Europe. The bristle-spined porcupine, Chaetomys subspinosus, is often subject to hunting for human food, but it is not known whether it can be a reservoir of this parasite. The aim of this study was to verify the occurrence of T. gondii in C. subspinosus from southern Bahia, Brazil, and genetically characterize and compare the strains found with those isolated in previous studies of the same region to quantify their genetic diversity by multilocus PCR-RFLP and PCR sequencing.FindingsTwelve free-ranging C. subspinosus captured in forest fragments of the Una Biological Reserve and adjacent areas were evaluated. Three isolates of T. gondii (TgCsBr01-03) were detected. Two different genotypes were identified by applying multilocus PCR-RFLP with six molecular markers (SAG1, SAG2, SAG3, c22-8, PK1, and Apico). The isolates TgCsBr02 and TgCsBr03 were indistinguishable by this technique. However, the three isolates differed from all the reference strains and from the samples from the same region. Nevertheless, when the six genetic markers were used in multilocus PCR sequencing, all three isolates of T. gondii were different. The phylogenetic analysis revealed a greater genetic distance for TgCsBr01, which was closer to isolates from pigs from the same region, while TgCsBr02-03 was classified in the same lineage and was closer to isolates from sheep from this region. Conclusions: All the isolates differed from the clonal genotypes of types I, II, and III using both genotyping techniques.

Pages