EDENext Publication

Epidemic potential of an emerging vector borne disease in a marginal environment: Schmallenberg in Scotland

During 2011 Schmallenberg virus (SBV) presented as a novel disease of cattle and sheep that had apparently spread through northern Europe over a relatively short period of time, but has yet to infect Scotland. This paper describes the development of a model of SBV spread applied to Scotland in the event of an incursion.

The development of Leishmania turanica in sand flies and competition with L. major

BACKGROUND:

In Central Asian foci of zoonotic cutaneous leishmaniases, mixed infections of Leishmania turanica and L. major have been found in a reservoir host (the great gerbil, Rhombomys opimus) as well as in the sand fly vector Phlebotomus papatasi, but hybrids between these two Leishmania species have never been reported. In addition, the role of sand fly species other than P. papatasi in L. turanica circulation is not clear.

First report of adult Hyalomma marginatum rufipes (vector of Crimean-Congo haemorrhagic fever virus) on cattle under a continental climate in Hungary

Background

South Hungary is being monitored for the northward spreading of thermophilic ixodid species, therefore ticks were collected from cattle and wild ruminants (red, fallow and roe deer) in the autumn of 2011.

Findings

Besides indigenous species (1185 Dermacentor reticulatus and 976 Ixodes ricinus), two Hyalomma marginatum rufipes males were found on two cows, in September eight days apart.

Pathogenesis of West Nile virus lineage 1 and 2 in experimentally infected large falcons

West Nile virus (WNV) is a zoonotic flavivirus that is transmitted by blood-suckling mosquitoes with birds serving as the primary vertebrate reservoir hosts (enzootic cycle). Some bird species like ravens, raptors and jays are highly susceptible and develop deadly encephalitis while others are infected subclinically only. Birds of prey are highly susceptible and show substantial mortality rates following infection.

Modelling zoonotic diseases in humans: comparison of methods for hantavirus in Sweden

Because their distribution usually depends on the presence of more than one species, modelling zoonotic diseases in humans differs from modelling individual species distribution even though the data are similar in nature. Three approaches can be used to model spatial distributions recorded by points: based on presence/absence, presence/available or presence data. Here, we compared one or two of several existing methods for each of these approaches. Human cases of hantavirus infection reported by place of infection between 1991 and 1998 in Sweden were used as a case study.

Feeding Patterns of Potential West Nile Virus Vectors in South-West Spain

Background

Mosquito feeding behaviour determines the degree of vector–host contact and may have a serious impact on the risk of West Nile virus (WNV) epidemics. Feeding behaviour also interacts with other biotic and abiotic factors that affect virus amplification and transmission.

Flight Performance and Teneral Energy Reserves of Two Genetically-Modified and One Wild-Type Strain of the Yellow Fever Mosquito Aedes aegypti

The ability of sterile males to survive, disperse, find, and mate with wild females is key to the success of sterile insect technique (SIT). The Release of Insects carrying a Dominant Lethal (RIDL) system is a genetics-based SIT strategy for Aedes aegypti. We examine two aspects of insect performance, flight potential (dispersal ability) and teneral energy reserves, by comparing wild-type (WT) males with genetically-modified lines carrying the tetracycline-repressible constructs OX513A and OX3604C.

Identifying environmental drivers of insect phenology across space and time: Culicoides in Scotland as a case study

Interpreting spatial patterns in the abundance of species over time is a fundamental cornerstone of ecological research. For many species, this type of analysis is hampered by datasets that contain a large proportion of zeros, and data that are overdispersed and spatially autocorrelated. This is particularly true for insects, for which abundance data can fluctuate from zero to many thousands in the space of weeks.

Subscribe to RSS - EDENext Publication