Parasites and Vectors

Highly discordant serology against Trypanosoma cruzi in central Veracruz, Mexico: role of the antigen used for diagnostic

Background: Chagas disease is a parasitic disease caused by the protozoan parasite Trypanosoma cruzi. In Mexico, the burden of the disease is difficult to estimate and improving surveillance for Chagas disease is an important priority. We aimed here at determining the seroprevalence of T. cruzi infection in humans in a rural community in Veracruz. Methods: Serum samples (196) were analyzed for T. cruzi infection using five enzyme-linked immunosorbent assay (ELISA) tests: two in-house tests based on crude parasite extract and three commercial ELISA kits. Because of highly discordant results, we further explored the importance of parasite antigens and strains by western-blot analysis. Results: A total of 74 samples (37.7 %) were reactive with at least one ELISA, but discordance among tests was very high. The best agreement was between Chagatest recombinant and Chagatek ELISA (Kappa index = 0.798). The agreement between other combinations of tests ranged from 0.038 to 0.518. Discordant samples were confirmed by western-blot analysis using up to nine parasite strains, giving a seroprevalence of 33.7 %. Conclusions: Commercial tests had a very limited ability to detect T. cruzi infection in the study population. In-house tests based on crude parasite antigens showed a greater sensitivity but were still unable to detect all cases of T. cruzi infection, even when based on a local parasite strain. The high seroprevalence confirmed the hyper-endemicity of T. cruzi infection in the region. Reliable epidemiological surveillance of Chagas disease will require the development of improved diagnostic tests.

Mosquito Rasputin interacts with chikungunya virus nsP3 and determines the infection rate in Aedes albopictus

Background: Chikungunya virus (CHIKV) is an arthritogenic alphavirus (family Togaviridae), transmitted by Aedes species mosquitoes. CHIKV re-emerged in 2004 with multiple outbreaks worldwide and recently reached the Americas where it has infected over a million individuals in a rapidly expanding epidemic. While alphavirus replication is well understood in general, the specific function (s) of non-structural protein nsP3 remain elusive. CHIKV nsP3 modulates the mammalian stress response by preventing stress granule formation through sequestration of G3BP. In mosquitoes, nsP3 is a determinant of vector specificity, but its functional interaction with mosquito proteins is unclear. Methods: In this research we studied the domains required for localization of CHIKV nsP3 in insect cells and demonstrated its molecular interaction with Rasputin (Rin), the mosquito homologue of G3BP. The biological involvement of Rin in CHIKV infection was investigated in live Ae. albopictus mosquitoes. Results: In insect cells, nsP3 localized as cytoplasmic granules, which was dependent on the central domain and the C-terminal variable region but independent of the N-terminal macrodomain. Ae. albopictus Rin displayed a diffuse, cytoplasmic localization, but was effectively sequestered into nsP3-granules upon nsP3 co-expression. Site-directed mutagenesis showed that the Rin-nsP3 interaction involved the NTF2-like domain of Rin and two conserved TFGD repeats in the C-terminal variable domain of nsP3. Although in vitro silencing of Rin did not impact nsP3 localization or CHIKV replication in cell culture, Rin depletion in vivo significantly decreased the CHIKV infection rate and transmissibility in Ae.albopictus. Conclusions: We identified the nsP3 hypervariable C-terminal domain as a critical factor for granular localization and sequestration of mosquito Rin. Our study offers novel insight into a conserved virus-mosquito interaction at the molecular level, and reveals a strong proviral role for G3BP homologue Rin in live mosquitoes, making the nsP3-Rin interaction a putative target to interfere with the CHIKV transmission cycle.

Comparative evaluation of the Sticky-Resting-Box-Trap, the standardised resting-bucket-trap and indoor aspiration for sampling malaria vectors

Background: Understanding mosquito resting behaviour is important for the control of vector-borne diseases, but this remains a challenge because of the paucity of efficient sampling tools. We evaluated two novel sampling methods in the field: the Sticky Resting Box (SRB) and the Resting Bucket trap (RBu) to test their efficiency for sampling malaria vectors resting outdoors and inside houses in rural Tanzania. The performance of RBu and SRB was compared outdoors, while indoors SRB were compared with the Back Pack Aspiration method (BP). Trapping was conducted within 4 villages in the Kilombero Valley, Tanzania over 14 nights. On each night, the performance for collecting Anopheles vectors and Culicinae was compared in 4 households by SRB and RBu outdoors and by SRB or fixed-time Back Pack aspirator in 2 of the 4 focal households indoors.FindingsA total of 619 Anopheles gambiae s.l., 224 Anopheles funestus s.l. and 1737 Culicinae mosquitoes were captured. The mean abundance of An. arabiensis and An. funestus s.l. collected with SRB traps inside and outdoors was significantly lower than with BP or RBu. The SRB however, outperformed BP aspiration for collection of Culicinae indoors. Conclusions: Of the methods trialled indoors (BP and SRB), BP was the most effective, whilst outdoors RBu performed much better than SRB. However, as SRB can passively sample mosquitoes over a week they could provide an alternative to the RBu where daily monitoring is not possible.

Rickettsia raoultii in Haemaphysalis erinacei from marbled polecats, China–Kazakhstan border

We found Rickettsia raoultii DNA in 2 out of 32 (6.25 %) Haemaphysalis erinacei ticks. Result showed that the sequences of five genes (17-kDa, gltA, ompA, rrs, and ompB) were 100 % identity with that of R. Raoultii in GenBank. This study is the first report on the presence of R. raoultii in H. erinacei from wild marbled polecat, Vormela peregusna. Our findings suggest that H. erinacei parasitizing wild marbled polecat may serve as reservoir and carriers for R. raoultii in areas around the China-Kazakhstan border. The transmission of tick-borne diseases originated from wildlife should not be underestimated in border region.

Larval and adult environmental temperatures influence the adult reproductive traits of Anopheles gambiae s.s.

Background: Anopheles mosquito life-history parameters and population dynamics strongly influence malaria transmission, and environmental factors, particularly temperature, strongly affect these parameters. There are currently some studies on how temperature affects Anopheles gambiae s.s. survival but very few exist examining other life-history traits. We investigate here the effect of temperature on population dynamics parameters. Methods: Anopheles gambiae s.s. immatures were reared individually at 23 ± 1 °C, 27 ± 1 °C, 31 ± 1 °C, and 35 ± 1 °C, and adults were held at their larval temperature or at one of the other temperatures. Larvae were checked every 24 h for development to the next stage and measured for size; wing length was measured as a proxy for adult size. Females were blood fed three times, and the number of females feeding and laying eggs was counted. The numbers of eggs and percentage of eggs hatched were recorded. Results: Increasing temperatures during the larval stages resulted in significantly smaller larvae (p = 0.005) and smaller adults (p < 0.001). Adult temperature had no effect on the time to egg laying, and the larval temperature of adults only affected the incubation period of the first egg batch. Temperature influenced the time to hatching of eggs, as well as the time to development at every stage. The number of eggs laid was highest when adults were kept at 27 °C, and lowest at 31 °C, and higher adult temperatures decreased the proportion of eggs hatching after the second and third blood meal. Higher adult temperatures significantly decreased the probability of blood feeding, but the larval temperature of adults had no influence on the probability of taking a blood meal. Differences were observed between the first, second, and third blood meal in the times to egg laying and hatching, number of eggs laid, and probabilities of feeding and laying eggs. Conclusions: Our study shows that environmental temperature during the larval stages as well as during the adult stages affects Anopheles life-history parameters. Data on how temperature and other climatic factors affect vector life-history parameters are necessary to parameterise more reliably models predicting how global warming may influence malaria transmission.

Detection of viable plasmodium ookinetes in the midguts of anopheles coluzzi using PMA-qrtPCR

Background: Mosquito infection with malaria parasites depends on complex interactions between the mosquito immune response, the parasite developmental program and the midgut microbiota. Simultaneous monitoring of the parasite and bacterial dynamics is important when studying these interactions. PCR based methods of genomic DNA (gDNA) have been widely used, but their inability to discriminate between live and dead cells compromises their application. The alternative method of quantification of mRNA mainly reports on cell activity rather than density.MethodQuantitative real-time (qrt) PCR in combination with Propidium Monoazide (PMA) treatment (PMA-qrtPCR) has been previously used for selectively enumerating viable microbial cells. PMA penetrates damaged cell membranes and intercalates in the DNA inhibiting its PCR amplification. Here, we tested the potential of PMA-qrtPCR to discriminate between and quantify live and dead Plasmodium berghei malarial parasites and commensal bacteria in the midgut of Anopheles coluzzii Coetzee & Wilkerson 2013 (formerly An. gambiae M-form). Results: By combining microscopic observations with reverse transcriptase PCR (RT-PCR) we reveal that, in addition to gDNA, mRNA from dead parasites also persists inside the mosquito midgut, therefore its quantification cannot accurately reflect live-only parasites at the time of monitoring. In contrast, pre-treating the samples with PMA selectively inhibited qrtPCR amplification of parasite gDNA, with about 15 cycles (Ct-value) difference between PMA-treated and control samples. The limit of detection corresponds to 10 Plasmodium ookinetes. Finally, we show that the PMA-qrtPCR method can be used to quantify bacteria that are present in the mosquito midgut. Conclusion: The PMA-qrtPCR is a suitable method for quantification of viable parasites and bacteria in the midgut of Anopheles mosquitoes. The method will be valuable when studying the molecular interactions between the mosquito, the malaria parasite and midgut microbiota.

Population expansion and gene flow in Giardia duodenalis as revealed by triosephosphate isomerase gene

Background: Giardia duodenalis is a protozoan parasite that can cause significant diarrhoeal diseases. Knowledge of population genetics is a prerequisite for ascertaining the invasion patterns of this parasite. In order to infer evolutionary patterns that could not be uncovered based on the morphological features, a population genetic study with the incorporation of molecular marker was carried out to access the genetic structure of G. duodenalis isolated from the Malaysian population and the global populations. Methods: A total of 154 samples positive for Giardia, collected from different Malaysian communities, were subjected to DNA amplification and sequencing targeting three genetic loci (tpi, gdh, and bg). The tpi sequences together with sequences from the global data obtained from the NCBI GenBank were used for genetic diversity analyses including identification of haplotypes, haplotype diversity, nucleotide diversity, Tajima’s D and Fu and Li’s D, gene flow and genetic differentiation tests. Results: Analysis of the Malaysian and global data showed that assemblages A, B, and E (the most prevalent assemblages in humans and animals), have different levels of genetic diversity. Assemblage B had the highest level of both haplotype diversity and nucleotide diversity, followed by assemblage E. The analysis also revealed population expansion and high gene flow in all assemblages. No clear genetic structure was observed across five continents (i.e., the Americas, Europe, Asia, Australia and Africa). However, median joining network of assemblage B formed a cluster that was exclusively isolated from Asia while other haplotypes were well dispersed across the continents. Conclusions: This study provides new insight into the genetic diversity of Giardia assemblages in different geographical regions. The significant result shown by gene flow and genetic differentiation analyses as well as test of neutrality among the populations should have brought a clearer picture to the dynamics and distribution of Giardia infection.

Blastocystis specific serum immunoglobulin in patients with irritable bowel syndrome (IBS) versus healthy controls

Background: Blastocystis species are common enteric human parasites and carriage has been linked to Irritable Bowel Syndrome (IBS), particularly diarrhoea-predominant IBS. The spectrum of immune reactivity to Blastocystis proteins has been reported previously in symptomatic patients. We investigated differences in serum immunoglobulin profiles between patients with IBS, both positive and negative for Blastocystis carriage, and healthy controls (HC). Methods: Forty diarrhoea-predominant IBS patients (26 patients positive for Blastocystis sp., 14 negative patients) and forty HC (24 positive, 16 Blastocystis-negative) were enrolled. Age, gender, ethnicity and serum immunoglobulin A (IgA) levels were recorded and faecal specimens were analysed using smear, culture and polymerase chain reaction amplification of ribosomal DNA. Sera were tested in Western blots and the reactivities compared to known targets using monoclonal antibodies Blastofluor® (Blastocystis specific antibody), MAb1D5 (cytopathicto Blastocystis cells), anti-promatrix metalloprotease-9 (anti-MMP-9) and SDS-PAGE zymograms. Results: Levels of serum IgA were significantly lower in Blastocystis carriers (p < 0.001) but had no relationship to symptoms. Western blots demonstrated serum IgG antibodies specific for Blastocystis proteins of 17,27,37,50,60-65, 75–90, 95–105 and 150 kDa MW. Reactivity to the 27, 50 and 75-95 kDa proteins were found more frequently in the IBS group compared to the HC’s (p < 0.001) and correlation was greater for Blastocystis-positive IBS patients (p < 0.001) than for negative IBS patients (p < 0.05). MAb1D5 reacted with proteins of 27 and 100 kDa, and anti-MMP-9 with 27, 50 and 75-100 kDa proteins. Bands were seen in zymograms around 100 kDa. Conclusions: Low serum IgA levels are associated with Blastocystis carriage. All IBS patients were more likely to demonstrate reactivity with Blastocystis proteins of 27 kDa (likely a cysteine protease), 50 and 75-95 kDa MW compared to HC. The presence of antibodies to these Blastocystis proteins in some Blastocystis-negative subjects suggests either prior exposure to Blastocystis organisms or antibody cross reactivities. The anti-proMMP-9 reaction at 50 and 75–100 kDa and the zymogram result suggest that metalloproteases may be important Blastocystis antigens.Trial registrationAustralian and New Zealand Clinical Trials registry ACTRN: 12611000918921

Detecting genotyping errors at Schistosoma japonicum microsatellites with pedigree information

Background: Schistosomiasis japonica remains a major public health problem in China. Integrating molecular analyses, such as population genetic analyses, of the parasite into the on-going surveillance programs is helpful in exploring the factors causing the persistence and/or spread of Schistosoma japonicum. However, genotyping errors can seriously affect the results of such studies, unless accounted for in the analyses. Methods: We assessed the genotyping errors (missing alleles or false alleles) of seven S. japonicum microsatellites, using a pedigree data approach for schistosome miracidia, which were stored on Whatman FTA cards. Results: Among 107 schistosome miracidia successfully genotyped, resulting in a total of 715 loci calls, a total of 31 genotyping errors were observed with 25.2 % of the miracidia having at least one error. The error rate per locus differed among loci, which ranged from 0 to 9.8 %, with the mean error rate 4.3 % over loci. With the parentage analysis software Cervus, the assignment power with these seven markers was estimated to be 89.5 % for one parent and 99.9 % for a parent pair. One locus was inferred to have a high number of null alleles and a second with a high mistyping rate. Conclusion: To the authors’ knowledge, this is the first time that S. japonicum pedigrees have been used in an assessment of genotyping errors of microsatellite markers. The observed locus-specific error rate will benefit downstream epidemiological or ecological analyses of S. japonicum with the markers.

Draft genome of Brugia pahangi : high similarity between B. pahangi and B. malayi

Background: Efforts to completely eradicate lymphatic filariasis from human population may be challenged by the emergence of Brugia pahangi as another zoonotic lymphatic filarial nematode. In this report, a genomic study was conducted to understand this species at molecular level. Methods: After blood meal on a B. pahangi-harbouring cat, the Aedes togoi mosquitoes were maintained to harvest infective third stage larvae, which were then injected into male Mongolian gerbils. Subsequently, adult B. pahangi were obtained from the infected gerbil for genomic DNA extraction. Sequencing and subsequently, construction of genomic libraries were performed. This was followed by genomic analyses and gene annotation analysis. By using archived protein sequences of B. malayi and a few other nematodes, clustering of gene orthologs and phylogenetics were conducted. Results: A total of 9687 coding genes were predicted. The genome of B. pahangi shared high similarity to that B. malayi genome, particularly genes annotated to fundamental processes. Nevertheless, 166 genes were considered to be unique to B. pahangi, which may be responsible for the distinct properties of B. pahangi as compared to other filarial nematodes. In addition, 803 genes were deduced to be derived from Wolbachia, an endosymbiont bacterium, with 44 of these genes intercalate into the nematode genome. Conclusions: The reporting of B. pahangi draft genome contributes to genomic archive. Albeit with high similarity to B. malayi genome, the B. pahangi-unique genes found in this study may serve as new focus to study differences in virulence, vector selection and host adaptability among different Brugia spp.

Vector-borne transmission of Besnoitia besnoiti by blood-sucking and secretophagous flies: epidemiological and clinicopathological implications

Background: Bovine besnoitiosis has been recently diagnosed in a three-parted herd of 796 Aubrac and Charolais beef cattle in Hungary. A large scale serological, histological and molecular survey was initiated in order to uncover important factors in the local epidemiology of the disease.FindingsBlood samples were collected (three times from the whole herd, and repeatedly from selected animals) for serological screening by ELISA. In addition, various organs from aborted fetuses and newborn calves, skin and colostrum samples of seropositive heifers/cows, and ticks collected from the cattle were histologically and/or molecularly analysed for the presence of Besnoitia besnoiti.All fetal and calf tissues, as well as colostrum and tick samples from cows were PCR negative. Based on ELISA results, only very few local cows seroconverted after mating with imported, infected bulls, and not necessarily as a consequence of this event. Among calves that were born to seropositive, imported cows and stayed with their mother until weaning at seven months of age, seroprevalence decreased significantly, but remained high. At the same time, 28 calves born from seropositive cows, but separated from their dams immediately after receiving colostrum, were successfully reared and remained uninfected.Following a second herd-level screening, all Aubrac cattle (except for heifer calves) and all seropositive Charolais cows and bulls were culled. Manifestation of the disease is currently sporadic. Among chronically affected heifers two types of skin lesions were noted, and histological evaluation indicated marked distension of sweat gland ducts with membrane-bound structures (resembling cystozoites) in their contents. Conclusions: Transmission through natural mating, as well as transplacental, colostral and tick-borne transmission of B. besnoiti was either unlikely or did not occur. However, the risk for spreading of the infection was high, when calves stayed with their mother during suckling, and if animals were kept in the same stable (although physically separated) during the main fly season. Herd replacement and generation exchange (i.e. early weaning and artificial feeding) appear to be the successful strategies for the local eradication of bovine besnoitiosis. Adding to the already known mechanical transmission of B. besnoiti by blood-sucking flies, results of the present study suggest that secretophagous flies should also be evaluated as potential vectors of this coccidium species.

A broad-range survey of ticks from livestock in Northern Xinjiang: changes in tick distribution and the isolation of Borrelia burgdorferi sensu stricto

Background: Borreliosis is highly prevalent in Xinjiang Uygur Autonomous Region, China. However, little is known about the presence of Borrelia pathogens in tick species in this region, in addition Borrelia pathogens have not been isolated from domestic animals. Methods: We collected adult ticks from domestic animals at 19 sampling sites in 14 counties in northern Xinjiang from 2012 to 2014. Ticks were identified to species by morphology and were molecularly analysed by sequences of mitochondrial 16S rDNA gene; 4–8 ticks of each species at every sampling site were sequenced. 112 live adult ticks were selected for each species in every county, and were used to culture Borrelia pathogens; the genotypes were then determined by sequences of the 5S-23S rRNA intergenic spacer and the outer surface protein A (ospA) gene. Results: A total of 5257 adult ticks, belonging to four genera and seven species, were collected. Compared with three decades ago, the abundance of the five common tick species during the peak ixodid tick season has changed. Certain tick species, such as Rhipicephalus turanicus (Rh. turanicus), was found at Jimusaer, Yining, Fukang, and Chabuchaer Counties for the first time. Additionally, the sequence analyses showed that the Hyalomma asiaticum (Hy. asiaticum), Haemaphysalis punctata (Ha. punctata), and Dermacentor marginatus (D. marginatus) that were collected from different sampling sites (≥3 sites) shared identical 16S rDNA sequences respectively. For the tick species that were collected from the same county, such as Hy. asiaticum from Shihezi County and Rh. turanicus from Yining County, their 16S rDNA sequences showed genetic diversity. In addition, sixteen Borrelia isolates were found in Hy. asiaticum, Ha. punctata, D. marginatus and Rh. turanicus, which infested cattle, sheep, horse and camel in Yining, Chabuchaer, Shihezi and Shawan Counties. All of the isolates were genetically identified as B. Burgdorferi sensu stricto. Conclusions: Warmer and wetter climate may have contributed to the altered distribution and abundance of the five most common ticks in northern Xinjiang. The genetic analyses showed that certain tick species, such as Hy. asiaticum or Rh. turanicus, exhibit genetic commonness or diversity. Additionally, this study is the first to isolate B. burgdorferi sensu stricto in Hy. asiaticum asiaticum, H. punctata, D. nuttalli and D. marginatus ticks from domestic animals. These ticks may transmit borreliosis among livestock.

Phenotypic and genotypic variations among three allopatric populations of Lutzomyia umbratilis , main vector of Leishmania guyanensis

Background: In South America, Lutzomyia umbratilis is the main vector of Leishmania guyanensis, one of the species involved in the transmission of American tegumentary leishmaniasis. In Brazil, L. umbratilis has been recorded in the Amazon region, and in the state of Pernambuco, Northeastern region, where an isolated population has been identified. This study assessed the phylogeographic structure and size and shape differences of the wing of three Brazilian populations. Methods: Samples of L. umbratilis were collected from Rio Preto da Eva (north of the Amazon River, Amazonas), from Manacapuru (south of the Amazon River), and from the isolated population in Recife, Pernambuco state. These samples were processed to obtain sequences of the Cytochrome Oxidase I mitochondrial gene. Geometrics morphometry analysis of the right wing shape of the three populations was made using discriminate canonical analysis. Results: Phylogenetic analysis revealed the presence of two distinct monophyletic clades: one clade comprised of the Recife and Rio Preto da Eva samples, and the other clade comprised of the Manacapuru samples. Comparing the Manacapuru population with the Recife and Rio Preto da Eva populations generated high indices of interpopulational divergence. Geometric morphometry analysis indicated two distinct groups between the studied populations. Canonical variate analysis of wing shape indicated that Rio Preto da Eva population is significantly closer to Recife population, and both populations were genetically distant from Manacapuru. Conclusion: The polymorphic sites and geometric morphometry analysis indicate that the distance, lack of continuity and environmental differences have not modified the ancestral relationship between Recife and Rio Preto da Eva populations. The genetic and morphological similarities shared by the Recife and Rio Preto da Eva populations suggest that these populations are more closely related evolutionarily. These results confirm the existence of an L. umbratilis species complex in the North and Northeast regions.

Evaluation of six novel antigens as potential biomarkers for the early immunodiagnosis of schistosomiasis

Background: Early diagnosis of schistosomiasis, prior to egg laying, would enable earlier treatment and help interrupt the transmission cycle of the parasite and the progress of the disease. Previously we identified six novel antigens with potential as diagnostic markers for human Schistosoma japonicum infections. In this study, we evaluated these antigens as candidate biomarkers for the early diagnosis of schistosomiasis in mice and rabbits. Methods: The transcriptional profiles of the six antigens (SjSP-13, SjSP-23, SjSP-160, SjSP-164, SjSP-189 and SjSP-216) at different developmental stages were analyzed by quantitative PCR. The recombinant proteins were expressed in E. coli and purified with nickel chelate affinity chromatography. We then developed recombinant protein-based ELISA kits to analyze the kinetics of antigen-specific antibodies during the course of infection in mice and rabbits. The early diagnostic validity of the candidate SjSP-216 was further evaluated in mice and rabbits infected with S. japonicum. Results: Of the six antigens, SjSP-13, SjSP-160 and SjSP-216 were highly expressed in 21-day old young worms, while SjSP-23, SjSP-164 and SjSP-189 were highly expressed in eggs. In the mouse model, we detected a significant increase in antibodies against SjSP-13 and SjSP-216 at 3 weeks post-infection. However, in the rabbit model, only anti-SjSP-216 antibody showed a significant increase at this time point. We recorded 100 % diagnostic sensitivity and specificity of SjSP-216-based ELISA in both infected mice and rabbits, 3 weeks after infection. Conclusions: This study strongly suggests that SjSP-216, a highly expressed gene in the young worms, could serve as a potential biomarker for the early immunodiagnosis of S. japonicum infections in vertebrate hosts.

Isothermal Recombinase Polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection

Background: Accurate diagnosis of urogenital schistosomiasis is vital for surveillance/control programs. Amplification of schistosome DNA in urine by PCR is sensitive and specific but requires infrastructure, financial resources and skilled personnel, often not available in endemic areas. Recombinase Polymerase Amplification (RPA) is an isothermal DNA amplification/detection technology that is simple, rapid, portable and needs few resources.FindingsHere a Schistosoma haematobium RPA assay was developed and adapted so that DNA amplicons could be detected using oligochromatographic Lateral Flow (LF) strips. The assay successfully amplified S. haematobium DNA at 30–45 °C in 10 mins and was sensitive to a lower limit of 100 fg of DNA. The assay was also successful with the addition of crude urine, up to 5 % of the total reaction volume. Cross amplification occurred with other schistosome species but not with other common urine microorganisms. Conclusion: The LF-RPA assay developed here can amplify and detect low levels of S. haematobium DNA. Reactions are rapid, require low temperatures and positive reactions are interpreted using lateral flow strips, reducing the need for infrastructure and resources. This together with an ability to withstand inhibitors within urine makes RPA a promising technology for further development as a molecular diagnostic tool for urogenital schistosomiasis.

Population dynamics and community structure of Anopheles mosquitoes along the China-Myanmar border

Background: Understanding the ecology of malaria vectors such as species composition and population dynamics is essential for developing cost-effective strategies to control mosquito vector populations. Methods: Adult mosquitoes (n = 79,567) were collected in five villages along the China-Myanmar border from April 2012 to September 2014 using the CDC light trap without bait method. Mosquito community structure, Anopheles species composition and diversity were analyzed. Results: Twenty species of Anopheles mosquitoes were identified, with An. minimus s.l. accounting for 85 % of the total collections. Mosquito densities varied from 0.05 females per trap per night (f/t/n) to 3.00 f/t/n, with strong seasonality in all sites and densities peaked from June to August. An. minimus s.l. was predominant (accounting for 54–91 % of total captures) in four villages, An. maculatus s.l. was predominant (71 %) in the high elevation village of Dao Nong, and An. culicifacies accounted for 15 % of total captures in the peri-urban area of Simsa Lawk. All 20 species have been captured in the Mung Seng Yang village, 18 and 15 species in Ja Htu Kawng and Na Bang respectively, and nine species in both Simsa Lawk and Dao Nong. Species richness peaked from April to August. Species diversity, species dominance index, and species evenness fluctuated substantially from time to time with no clear seasonality, and varied greatly amongst villages. Conclusions: Mosquitoes were abundant in the China-Myanmar bordering agricultural area with clear seasonality. Species composition and density were strongly affected by natural environments. The targeted intervention strategy should be developed and implemented so as to achieve cost-effectiveness for malaria control and elimination along the border areas.

Determination of Giardia duodenalis assemblages and multi-locus genotypes in patients with sporadic giardiasis from England

Background: The protozoan Giardia duodenalis is a common but highly diverse human parasite that comprises a complex of seven morphologically identical genetic assemblages, further divided into sub-assemblages. There is very little information available on the diversity of Giardia sub-assemblages and multi-locus genotypes infecting people in the United Kingdom. In this study we studied the molecular epidemiology of Giardia in symptomatic patients from North West England. Methods: Whole faecal DNA was extracted from the faecal samples of 406 Giardia cases and the parasites assemblage, sub-assemblage and multi-locus genotype were determined using PCR amplification, DNA sequencing and phylogenetic analysis of the beta-giardin, glutamate dehydrogenase, triose-phosphate isomerase and small-subunit ribosomal RNA genes. Information about age, gender and self-reported clinical outcomes was also collected from the patients to check for differences associated with the infecting Giardia assemblage. Results: Our results showed a difference in the age prevalence of the two assemblages, with assemblage A being more common in older cases. Cases infected with assemblage B more often reported vomiting and a longer illness than cases infected with assemblage A. The majority of infections (64 %) were caused by assemblage B followed by assemblage A (33 %), while mixed-assemblage infections were rare (3 %). Assemblage A isolates mostly belonged to the sub-assemblage AII and showed completed identity with previously described isolates. The level of genetic sub-structuring was significantly higher in assemblage B isolates, since a higher proportion of novel assemblage B sequences was detected compared to assemblage A. A high number of assemblage B sequences showed heterogeneous nucleotide positions that prevented the unambiguous assignment to a specific sub-assemblage. Both previously described and novel multi-locus genotypes were described in both assemblages, and up to 17 different assemblage B multi-locus genotypes were found. Conclusions: We have produced the first data on the parasite multi-locus genotypes in the UK and have demonstrated that the molecular diversity of Giardia is similar to other developed countries. Furthermore, we showed that the parasite assemblages infecting humans may be associated with patients of different ages and with different clinical outcomes.

A recombinant antigen-based enzyme-linked immunosorbent assay (ELISA) for lungworm detection in seals

Background: Pinnipeds are frequently infected by the lungworms Otostrongylus circumlitus and Parafilaroides gymnurus (Metastrongyloidea). Infections are frequently associated with secondary bacterial bronchopneumonia and are often lethal. To date, a reliable lungworm diagnosis in individual seals is only possible during necropsy as examination of faeces collected from resting places does not allow assignment to individuals. Therefore, a diagnostic tool for lungworm detection in living seals is desirable for monitoring health of seals in the wild and in captivity. Previously, an ELISA based on recombinant bovine lungworm major sperm protein (MSP) as diagnostic antigen was developed for lungworm diagnosis in cattle. In the present study, this test was adapted for detection of antibodies against lungworms in harbour (Phoca vitulina) and grey seals (Halichoerus grypus). Furthermore, sera of northern elephant seals (Mirounga angustirostris) were tested to evaluate whether the harbour/grey seal ELISA is suitable for this seal species as well. Methods: For ELISA evaluation, lungworm-positive and -negative sera of harbour and grey seals were analysed using horseradish peroxidase (HRP)-conjugated Protein A as secondary antibody. Optical density was measured and a receiver operating characteristic (ROC) analysis was performed to determine a cut-off value. Potential cross-reactions were examined by testing serum of seals positive for gastrointestinal and heart nematodes, but negative for lungworm infections. In addition, sera of northern elephant seals were analysed. Results: Harbour and grey seal serum samples showed significant differences in optical density (OD) between serum of infected and uninfected animals resulting in a cut-off value of 0.422 OD with a specificity of 100 % (95 % CI: 87.23-100 %) and a sensitivity of 97.83 % (95 % CI: 88.47-99.94 %). Cross-reactions with heart or gastrointestinal nematodes were not observed. Analysis of northern elephant seal samples resulted in detection of antibodies in animals positive for lungworm larvae at faecal examination. Conclusions: The ELISA presented is a valuable method for detection of lungworm infections in live harbour and grey seals, providing a monitoring tool to reveal epidemiological dynamics of lungworm infections during health surveillance in free-ranging seals. Furthermore, ELISA results may aid institutions with harbour and grey seals under human care on decisions regarding anthelminthic treatment of individual animals.

An ecological study of sand flies (Diptera: Psychodidae) in the vicinity of Len&#231;&#243;is Maranhenses National Park, Maranh&#227;o, Brazil

Background: The Lençóis Maranhenses National Park, located in Maranhão, Brazil, is a region of exceptional beauty and a popular tourist destination. The adjoining area has suffered from the impact of human activity and, consequently, has experienced outbreaks of leishmaniasis. This study aimed to evaluate the composition, abundance, species richness and seasonal distribution of sand flies in the region and to determine the constancy of the insect population. Methods: The survey was conducted at three sites located in the municipalities of Barreirinhas and Santo Amaro between September 2012 and August 2013. Sampling was performed monthly using automatic light traps installed 1.5 m above the soil adjacent to 13 randomly selected rural dwellings. At each site, one trap was placed in the peridomicile near to animal enclosures and another (extradomicile) at 500 m from the peridomicile. Results: A total of 4,474 individual sand flies were collected over the year with the highest abundance recorded during the rainy season (December to June). Nine species were collected: L. whitmani, L. longipalpis, L. lenti, L. sordellii, L. evandroi, L. flaviscutellata, L. wellcomei, L. termitophila and L. intermedia. Although peridomiciliary and extradomiciliary environments presented similar species richness, the Shannon diversity index was significantly lower in the former (H’ = 2.4) compared with the latter (H’ = 4.98). Lutzomyia whitmani and L. longipalpis were the most abundant species and were classified as constant (constancy index, CI = 100 %) along with L. lenti (CI = 58.3), L. evandroi (CI = 58.3) and L. sordellii (CI = 66.7). The remaining four species presented CI values between 25 and 50 % and were considered accessory. Conclusions: The present results confirm the present of L. whitmani and L. longipalpis in the peridomicile of houses in Lençóis National Park. The abundance of these species could explain, respectively, the endemicity of cutaneous leishmaniasis and sporadic cases of visceral leishmaniasis in the study area. However, in the case of cutaneous leishmaniasis, the presence of other sand fly vectors (in addition to L. whitmani) cannot be neglected. Finally, this study emphasizes the need for a more effective and permanent supervision to control the expansion of these vectors and leishmaniasis outbreaks.

Screening of bat faeces for arthropod-borne apicomplexan protozoa: Babesia canis and Besnoitia besnoiti -like sequences from Chiroptera

Background: Bats are among the most eco-epidemiologically important mammals, owing to their presence in human settlements and animal keeping facilities. Roosting of bats in buildings may bring pathogens of veterinary-medical importance into the environment of domestic animals and humans. In this context bats have long been studied as carriers of various pathogen groups. However, despite their close association with arthropods (both in their food and as their ectoparasites), only a few molecular surveys have been published on their role as carriers of vector-borne protozoa. The aim of the present study was to compensate for this scarcity of information.FindingsAltogether 221 (mostly individual) bat faecal samples were collected in Hungary and the Netherlands. The DNA was extracted, and analysed with PCR and sequencing for the presence of arthropod-borne apicomplexan protozoa. Babesia canis canis (with 99-100 % homology) was identified in five samples, all from Hungary. Because it was excluded with an Ixodidae-specific PCR that the relevant bats consumed ticks, these sequences derive either from insect carriers of Ba. canis, or from the infection of bats. In one bat faecal sample from the Netherlands a sequence having the highest (99 %) homology to Besnoitia besnoiti was amplified. Conclusions: These findings suggest that some aspects of the epidemiology of canine babesiosis are underestimated or unknown, i.e. the potential role of insect-borne mechanical transmission and/or the susceptibility of bats to Ba. canis. In addition, bats need to be added to future studies in the quest for the final host of Be. besnoiti.

Pages